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Multicommunity population systems may reach a consensus state where the fractions of each species in
different communities agree on a common value. In this paper, by analyzing the evolutionary dynamics based
on an extended replicator equation incorporating community effects, the consensus problem of population
systems with n communities is studied. In particular, the simple case of two communities is investigated in
detail. In general, for n communities, a sufficient and necessary condition for population systems to reach a
consensus of coexistent state is provided. Regarding the population dynamics for the four different types of
games, whether the population systems can achieve consensus is determined. The dynamics of community-
structured populations shows richer features than nonstructured populations, and some nontrivial phenomena
arising from different community-structured population systems are illustrated with concrete numerical
examples.
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I. INTRODUCTION

Evolutionary game theory, pioneered by John Maynard
Smith �1�, offers a powerful and effective framework for
studying evolutionary dynamics, and has been widely used in
various areas, including biology �2�, economics �3�, and so-
cial sciences �4�. One fundamental mathematical approach to
modeling evolutionary game dynamics is based on determin-
istic differential equations for infinite, well-mixed popula-
tions, where every individual interacts with every other indi-
vidual equally likely. The most classical equations are the
Lotka-Volterra �5,6� and replicator equations �7�, which are
actually mutually equivalent �8�. In addition, classical sto-
chastic processes used in genetics, for example, the Moran
process, have provided the basis for an entirely new analysis
of evolutionary dynamics in finite populations �9–13�. Both
methods consider the evolutionary dynamics of well-mixed
populations, allowing one to gain analytical insight.

Recently, there has been a growing interest in studying the
evolutionary dynamics of structured populations where indi-
viduals are arranged on a network �or graph� �14�. Indeed, it
is plausible to take account of limited local, rather than glo-
bal, interactions and competitions using various network
models. More recently, a number of studies have revealed
that the outcome of evolutionary games depends crucially on
network topologies �15–17�. A variety of network models
have been investigated, such as regular graphs �lattices�
�18–21�, random graphs �16�, small-world networks �22�,
and scale-free networks �23–26�. Nevertheless, it is worth
noting that the community structures, which are common in
the real world, may also have significant influences on the
evolutionary dynamics. For instance, Chen et al. introduced
a community-structured prisoner’s dilemma model to study

the community effects on the evolution of cooperation by
simulations and found that changing the ratio between the
intercommunity and innercommunity links can affect the dy-
namical behavior of the population �27�. Here, the so-called
community is a group of agents with a high probability of
interaction within them, whereas a low probability of inter-
action between groups �28�. In particular, community prop-
erty is a signature of the hierarchical nature of complex sys-
tems as diverse as real social networks �28–33�, information
communication �34–36�, as well as biology �37–39�.

Yet, investigating the effects of community structures on
evolutionary dynamics has received little attention. In addi-
tion, to our knowledge, there are few analytical results on the
community-structured populations. Motivated by these, in
this paper, we introduce a minimum yet simple community-
structured population model, which mimics the essence of
ubiquitous community structures in the real social situations.
To this end, we consider a community-structured population
consisting of two strategies A and B. Inside each community,
individuals contact each other with equal probability, while
individuals belonging to different communities interact each
other with a lower probability. Interestingly, it is found that
such community-structured populations may reach a consen-
sus state, where the fractions of each species in different
communities agree on a common value ultimately. Let us
consider the simple case of two communities for an illustra-
tive example. If the stationary fractions of A players in both
communities are equal, meanwhile, the same case is with B
players, we say a consensus state of the population systems
is achieved. It is noteworthy that such consensus problems
arising in different contexts are also attracting growing atten-
tion in the field of control theory �34,35,40–43�. Herein, our
main contribution is to investigate the consensus problem in
a biological context by considering community-structured
populations based on evolutionary game theory. To do this,
we develop an extended replicator equation incorporating the
effects of community structures, and then analyze the evolu-
tionary dynamics in terms of equilibrium stability of the
fixed points. To be concrete, for populations with two com-
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munities, we classify four scenarios according to different
payoff matrices �i.e., different types of games�, and discuss
the corresponding conditions for the system to reach consen-
sus. In general, for n communities, we present a sufficient
and necessary condition for the system to achieve the con-
sensus state in which A and B players can coexist in each
community. Furthermore, through some numerical examples,
we illustrate that, in comparison with nonstructured popula-
tions, the effects of community structures lead to more di-
verse dynamic features. For example, the system can split
into distinct groups of communities with the same state, de-
pending on the configurations of the community structures.

The remainder of this paper is organized as follows. The
replicator equation with n communities is introduced in Sec.
II. A complete classification of the dynamics and consensus
of the population system with two communities are pre-
sented in Sec. III. Regarding the four different types of
games, consensus of the population system with n commu-
nities is studied in Sec. IV. We provide some numeric ex-
amples in Sec. V and finally draw conclusions in Sec. VI.

II. REPLICATOR EQUATION OF THE POPULATION
WITH n COMMUNITIES

Let us consider a population consisting of n communities.
In each community, individuals have tight connections while
between communities, there are only looser connections. Ini-
tially, every individual takes part in one of the n communities
randomly, resulting in all communities of approximately the
same size. Therefore, each individual in the population has
two tags. One is the strategy adopted by the individual, and
the other is the community which the individual belongs to.
In each step of the evolutionary process, everyone can update
its strategy but cannot travel to other communities. Hence,
the size of each community remains constant and the mem-
bers in each community cannot be altered.

In our model, we consider a symmetrical 2�2 game with
two pure strategies A and B. An A player receives payoff a or
b playing against another A or B player; similarly, a B player
receives payoff c or d playing against A or B player. We
denote by xi and yi �i=1,2 , . . . ,n� the fraction of individuals
adopting strategy A and B in community i, respectively. Ob-
viously, we have xi+yi=1. The state of the population with n
communities represented by a vector �x1 ,x2 , . . . ,xn� corre-
sponds to a point in the simplex Sn= ��x1 ,x2 , . . . ,xn��Rn :0
�xi�1�. Individuals play games in terms of pairwise inter-
actions specified by the matrix W with element wij, 1� i, j
�n, which characterizes the interaction probability with
which the individual from community i interacts with the one
from j. The interaction probability matrix �IPM� W has three
properties as listed below.

�i� Elements of the matrix must be real numbers in the
closed interval �0, 1� and the sum of elements in each row
equals 1, i.e., 0�wij �1 and � j=1

n wij =1.
�ii� We suppose that the interaction probabilities between

two players are symmetric, i.e., wij =wji.
�iii� The community structures imply that the interaction

probability within the same community is larger than that
between communities, i.e., wii�wij, for all j� i.

Accordingly, the fitness of A and B players in community
i are given by

fAi = a�Wx�T�i + b�Wy�T�i,

fBi = c�Wx�T�i + d�Wy�T�i.

Here, x� = �x1 ,x2 , . . . ,xn� and y� = �y1 ,y2 , . . . ,yn� are
n-dimensional row vectors. In each community, we use the
standard replicator equation which takes the form of

ẋi = xi�fAi − f̄ i� ,

ẏi = yi�fBi − f̄ i� , �1�

where f̄ i=xifAi+yifBi, is the average fitness of individuals in
the community i.

Substituting yi=1−xi into the first equation of Eq. �1�, we
obtain a simplified form

ẋi = xi�1 − xi����Wx�T�i + �� , �2�

where �=a−b−c+d, �=b−d. Note that the population dy-
namics expressed by Eq. �2� is no longer a standard replica-
tor equation. Here, we call Eq. �2� as an extended replicator
equation.

III. CONSENSUS OF POPULATION SYSTEMS
WITH TWO COMMUNITIES

Let us turn to the simple case of two communities. In this
situation, the IPM W is dependent of only one element. For
simplicity, we use � to denote the element w11, then the IPM
W reads

� � 1 − �

1 − � �
	 .

From Eq. �2�, we obtain nine possible equilibria �0, 0�, �0,1�,
�0,−� /���, �1, 0�, �1, 1�, �1,−��1−���+�� /���,
�−� /�� ,0�, �−��1−���+�� /�� ,1� and �−� /� ,−� /��. Note
that only �−� /� ,−� /�� is an interior equilibrium and all the
other points are boundary equilibria. If the interior equilib-
rium does not exist, every orbit of the replicator equation
converges to the boundary of the simplex S2 �for populations
with two communities, the readers can refer to Table I in
Appendix A for details about the stability of each equilib-
rium�. According to the comparison between a and c and that
between b and d, we distinguish four types of games as listed
below.

A. A dominates B

If a�c, b�d, then strategy A dominates B in nonstruc-
tured populations. The corresponding representative game is
the prisoner’s dilemma �PD� game in which strategies A and
B denote defection and cooperation, respectively. The Nash
equilibrium condition ensures that no player has a unilateral
incentive to deviate and play another strategy, as there is no
way he would be better off, given the others’ choices. For
populations without community structures, it is best to play
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the strategy of defection �A�, as the “all defectors” set of
strategies is the unique Nash equilibrium in this game. For
populations with community structures, however, the evolu-
tionary dynamics is not changed by introducing the commu-
nity structures. The reason is that in each community, the
fitness of defectors, which is the best response for every
individual, is always larger than that of cooperators. There-
fore, in the whole populations, defection �A� is still the best
choice. In this case, the system ends up with the state of all
A, i.e., consensus can be reached, irrespective of the initial
state and the IPM W �for details, please see Appendix B�.
The phase diagram of the evolutionary dynamics is depicted
in Fig. 1�a�.

B. B dominates A

If a�c and b�d, strategy B dominates A in nonstruc-
tured populations. This case is analogous with the above one.
The phase diagram can be found in Fig. 1�b�.

C. A and B coexist

For a�c and b�d, the representative model is the hawk-
dove game �also called the snowdrift or chicken game�. For
nonstructured populations, the strategy profiles �A ,B� and
�B ,A� are Nash equilibrium in this game. Thus, it is best to
play the strategy opposite to one’s opponent, resulting in

coexistence of A and B at a mixed stable state where the
fraction of A players is x

A
*=−� /�. For populations with two

communities, although the convergent orbit is more com-
plex, the final state of the system also converges to the inte-
rior equilibrium �−� /� ,−� /��. This is because, in analogy
to the situation of nonstructured populations, for any com-
munity i which arrives at stable equilibrium state, it requires
fAi= fBi, i.e., � j=1

n wijxj =−� /�. This condition holds uniquely
when x

1
*=−� /� and x

2
*=−� /� in the case of two communi-

ties. As a result, A and B can coexist at the same mixed
equilibrium in each community, resulting in a consensus
state of the population system. In addition, we should point
out that although the evolutionary outcome cannot be altered,
the convergent orbit is affected by the IPM W ��� and the
payoff matrix �see Fig. 2�. The detailed analysis of all fixed
points is provided in Appendix B.

D. A and B are bistable

If a�c and b�d, the payoff matrix denotes the coordi-
nation game in which each strategy is the best reply to itself.
Hence, both strategy profiles �A ,A� and �B ,B� are Nash
equilibria, making strategies A and B bistable in the non-
structured populations. Moreover, which equilibrium the
population evolves to depends on the interior fixed point
x

A
*=−� /� and the initial fraction of A. If the initial fraction

of A is larger than −� /�, the population will evolve to all A,
otherwise, to all B.

For populations with two communities, the evolutionary
dynamics is altered largely by the community structures. The
community with the initial fraction of A less than −� /� may
still end up with all A, in sharp contrast to the case of non-
structured populations. The reasoning is that, although the
initial fraction of A in a certain community i is less than
−� /�, the sum � j=1

n wijxj may exceed −� /� under the influ-
ence of other communities. This effect leads to the increase
of A players in this community, further paving the way for
community i to converge to the state of all A. Accordingly,
whether a community can converge to all A �or all B� de-
pends on the value of x

A
*=−� /� and the combined effect of

interaction probabilities and the state of the population. Spe-
cifically, if the sum � j=1

n wijxj is larger than −� /�, the fraction
of A players in community i is increased, otherwise, is de-
creased. Thus, community structure plays a nontrivial role on
the population dynamics. It is worth noting that, in the case
of �+2��0 and �� �a−c� /�, in addition to the stable fixed
points �0,0� and �1,1�, the boundary fixed points �0,1� and
�1,0� are also stable, namely, the situation of one community
consisting of all A and the other of all B is conceivable �see
Fig. 3�c��, which deviates from the definition of consensus.
Therefore, for the coordination games, population systems
can reach consensus only when the initial state of the popu-
lation lies in the attraction basins of �0,0� and �1,1� �region
D1 and D2 in Fig. 3�. The phase diagrams corresponding to
different arrangements of parameters are plotted in Fig. 3.

IV. CONSENSUS OF POPULATION SYSTEMS
WITH n COMMUNITIES

Consider the population with n communities. According
to the payoff matrix, we also distinguish four different types
of games.
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FIG. 1. �Color online� Phase diagrams for the case of dominant
A �B�. �a� For a�c and b�d �a=5, b=1, c=3, d=0, �=0.6�, the
fixed points �0,0�, �0,1�, �1,0�, and �1,1� are unstable, saddle, saddle,
and stable nodes, respectively. This means that A dominates B. The
population system can reach consensus irrespective of the initial
state and the interaction probability matrix. �b� For a�c and b
�d �a=3, b=0, c=5, d=1, �=0.6�, the fixed points �0,0�, �0,1�,
�1,0�, and �1,1� are stable, saddle, saddle, and unstable nodes, re-
spectively. Thus, strategy B dominates A. The system can arrive at
consensus of all B.
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A. Consensus under the condition of a�c and b�d (or a�c
and b�d)

For a game with a�c and b�d �or a�c and b�d�, a
representative example is the PD game. In this case, we have
shown that every orbit of Eq. �2� in two dimensions con-
verges to the boundary of S2. For population systems with n
communities �n�2�, the dynamics is similar to that of n
=2. The fixed point �−� /� , . . . ,−� /�� is not in Sn, so that
every orbit also goes to the boundary of Sn. Moreover, by the

signs of the eigenvalues of the Jacobian matrix at the fixed
points, it is easy to verify that in the case of a�c and b
�d, the equilibrium �0,…,0� is unstable and �1,…,1� is
stable; in the case of a�c and b�d, the former is stable and
the latter is unstable. In addition, the other boundary fixed
points are all saddles. Hence, in the above cases, only one
type of strategy can survive the game, which makes the
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FIG. 2. �Color online� Phase diagrams of the situation where A
and B coexist. �a� If �+2��0 and �� �a−c� /� �a=3, b=1, c=5,
d=0, �=0.7�, all orbits converge to the interior equilibrium
�1 /3,1 /3�. Points �0,0�, �0,1�, �1,0�, and �1,1� are all unstable
nodes, and the rest of the four equilibrium points are all saddle
nodes. �b� If �+2��0 and −� /���� ��+�� /� �a=3, b=1, c
=5, d=0, �=0.6�, all orbits still converge to the interior equilibrium
�1 /3,1 /3�. Only two boundary equilibrium points �0,0� and �1,1�
are unstable nodes. All the other equilibria are saddle nodes except
points �1,−1 /9� and �−1 /9,1� which are not found in the plane. �c�
If �+2��0 and ��+�� /����−� /� �a=1, b=3, c=2, d=0, �
=0.6�, the population still arrives at a coexistence state in the inte-
rior equilibrium �0.75,0.75�, resembling the case �b�. In all the
above cases, the population systems can reach a consensus state of
coexistence.
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FIG. 3. �Color online� Phase diagrams of the situation where A
and B are bistable. The interior equilibrium is always unstable in
below situations. �a� For �+2��0 and ��−� /� �a=5, b=0, c
=3, d=1, �=0.7�, all trajectories converge to one of the four stable
fixed points �0,0�, �0,1�, �1,0� as well as �1,1�, and the other four
equilibrium points are all saddle nodes. In this case, population
systems may achieve consensus. �b� For �+2��0 and ��+�� /�
���−� /� �a=5, b=0, c=4, d=4, �=0.7�, all orbits converge to
either of the two equilibria �0,0� and �1,1�. Fixed points �0,−� /���
and �−� /�� ,0� cannot be observed in the phase plane and the other
four equilibria are all saddle nodes. Population systems can reach
consensus irrespective of the initial state. �c� For �+2��0 and
−� /���� ��+�� /� �a=5, b=0, c=3, d=1, �=0.6�, population
systems still reaches consensus state independent of the initial state.
The other fixed points are all saddle nodes except the equilibria
�1,−��1−���+�� /��� and �−��1−���+�� /�� ,1� which are not in
the phase plane. In the above cases, region D1, D2, D3, and D4

represent the attraction basins of �0,0�, �1,1�, �0,1�, and �1,0�,
respectively.
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population consist of the same players. Specifically, for the
PD game, defection is still the best choice for each individual
in all communities, enabling defection to spread all over the
whole population. Thus, population systems can evolve to
the state of all A �B� under the condition of a�c and b�d
�or a�c and b�d�, resulting in a consensus.

B. Consensus under the condition of a�c and b�d (or a�c
and b�d)

If a�c and b�d �the representative example is the hawk-
dove game� or a�c and b�d �coordination games�, the
population ends up with coexistent or homogeneous state,
respectively, for the case of n=2. In the case of n�2, it is
easy to obtain that the equilibrium �0,…,0� and �1,…,1� are
unstable for a�c and b�d, while both stable for a�c and
b�d. Population systems are not able to reach consensus of
all A or all B for the former type of games. In contrast, they
can obtain such consensus for the latter games. Note that
population systems cannot reach consensus at other bound-
ary fixed points except �0,…,0� and �1,…,1�, we do not con-
centrate on the other boundary fixed points. As consensus
may be achieved at interior fixed point, we focus on analyz-
ing the stability of the interior equilibrium.

Theorem 1. The stability of the interior equilibrium of Eq.
�2� is equivalent to that of the equation

żi = zi���Wz�T�i + ��, i = 1, . . . ,n , �3�

where z� is the corresponding n-dimensional row vector. The
proof of theorem 1 is provided in Appendix C.

According to theorem 1, removing the term �1−xi� only
influences the convergent rate. In order to investigate the
stability of the interior equilibrium of Eq. �2�, we analyze the
corresponding simplified dynamics represented by Eq. �3�,
which is a standard Lotka-Volterra equation for n species.

Lemma 1. �See theorem 7.5.1 in Ref. �8�� There exists a
differentiable map from Sn= ��x1 ,x2 , . . . ,xn��Rn :0�xi�1�
onto Ŝn+1= ��x1 ,x2 , . . . ,xn+1��Rn+1 :0�xi�1 and �i=1

n+1xi
=1� mapping the orbits of the Lotka-Volterra equation �3�
onto the orbits of the replicator equation

�̇i = �i��Q��T�i − ��Q��T�, i = 1, . . . ,n + 1, �4�

where �� is an �n+1�-dimensional row vector and the matrix
Q is given below:



�w11 + � �w12 + � ¯ �w1n + � �

�w21 + � �w22 + � ¯ �w2n + � �

] ] ¯ ] ]

�wn1 + � �wn2 + � ¯ �wnn + � �

� � ¯ � 0
� .

Essentially, the above matrix Q can be viewed as an �n
+1�� �n+1� payoff matrix for the game with n+1 types of
strategies. The Qi,j denotes the payoff of an individual play-
ing strategy i against the one with strategy j. Accordingly, we
obtain a result in the following theorem.

Theorem 2. The stability of the interior equilibrium of a
population consisting of two species with n communities is

equivalent to that of a population composed of n+1 species
but without community structures.

It should be stressed that for an invertible IPM W, the
interior equilibrium point of Eq. �4� is

��* = � �

n� − �
,

�

n� − �
, . . . ,

�

n� − �
,

�

� − n�
 .

Note that in the cases of a�c and b�d and a�c and b
�d, the fixed point �−� /� , . . . ,−� /�� does not exist in Sn.
Consequently, in these two cases, theorem 1 and lemma 1 are
both invalid. However, in the cases of a�c and b�d and

a�c and b�d, the interior equilibrium ��* of Eq. �4� are in

Ŝn+1, in accordance with the valid interior equilibrium x�* of
Eq. �2�. Hence, in the cases of a�c and b�d and a�c and

b�d, the stability of x�* can be derived from that of ��*. Thus,
we obtain a sufficient and necessary condition for the stabil-
ity of the interior fixed point.

Theorem 3. The interior equilibrium ��*

= � �
n�−� , . . . , �

n�−� , �
�−n� � is asymptotically stable if and only if

for any �� ���* in some neighborhood of ��* in Ŝn+1, the in-
equality

����W 0

0 − �
	��T +

��

� − n�
� 0 �5�

always holds.
Proof. Since the payoff matrix Q is symmetric, the game

is a partnership game, which is also known as “game with
identical interests” or “potential game” �44�. By theorem

7.8.1 in Ref. �8�, we know that the interior equilibrium ��* is
an asymptotically stable state if and only if it is also an

evolutionarily stable state which needs the inequality ��Q��T

���*Q��T to be satisfied for any �� ���* in some neighborhood

of ��* in Ŝn+1.
Furthermore, we obtain that

��*Q��T = −
n�2

� − n�

independent of the vector ��. In addition, we also have

��Q��T = � + ����W 0

0 − �
	��T.

The inequality ��Q��T���*Q��T yields that

����W 0

0 − �
	��T �

��

n� − �
.

�
Based on inequality �5�, we can analyze the stability of

the interior equilibrium of Eq. �2� in n dimensions. If in-
equality �5� is satisfied, every orbit of Eq. �2� converges to
the interior equilibrium x�* which is a sink. This results in
coexistence of A and B in each community and a consensus
state of population systems. If inequality �5� does not hold,
the interior equilibrium x�* is neither evolutionarily stable
state nor asymptotically stable state. In this case, the interior
fixed point is a source and all orbits move away from it.
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Population systems cannot attain the consensus of coexistent
state. Thus, inequality �5� is also a sufficient and necessary
condition to judge whether or not population systems can
reach the consensus in which A and B can coexist. From
theorem 3, we get a further result as follows.

Corollary 1. In the case of a�c and b�d, the interior

equilibrium ��*= � �
n�−� , �

n�−� , . . . , �
n�−� , �

�−n� � is a source.

Proof. It is easy to find a point �� = �1,0 , . . . ,0�, �� ���* in

some neighborhood of ��* in Ŝn+1. We have

����W 0

0 − �
	��T = �w11.

In the case of a�c and b�d, there are ��0, ��0 and �
�−�. For n�1, we obtain �w11��� / �n�−��, derived
from � / �n�−���1 /n. As inequality �5� is not satisfied, the
interior equilibrium is neither evolutionarily stable state nor
asymptotically stable state. It is a source. �

Therefore, in the case of a�c and b�d, all orbits of Eq.
�4� drive away from the interior fixed point and converge to

the boundary of Ŝn+1, i.e., the systems cannot reach consen-
sus where both strategies coexist. However, as the boundary
fixed points �0,…,0� as well as �1,…,1� are stable, the whole
population may end up with the state of all A or all B. For the
case of a�c and b�d, we give another condition which is
different than theorem 3 to judge the stability of the interior
equilibrium.

Theorem 4. In the case of a�c and b�d, the interior

equilibrium ��*= � �
n�−� , �

n�−� , . . . , �
n�−� , �

�−n� � is a stable node
for a positive definite IPM W.

Proof. Let

Q̄ = ��W 0

0 − �
	 .

The stability of Eq. �4� is the same with that of the equation

�̇i = �i��Q̄��T�i − ��Q̄��T�, i = 1, . . . ,n + 1.

In the case of a�c and b�d, we have the parameters �
�0 and ��0. As the IPM W is a positive definite matrix,

the matrix Q̄ is a negative definite matrix, giving rise to the

Lyapunov function V����=−��Q̄��T�0. Since Q̄ is symmetric,
we obtain

V̇���� = − 2��̇Q̄��T = − 2�
i=1

n+1

�̇i�Q̄��T�i

= − 2�
i=1

n+1

�i�Q̄��T�i
2 + 2��

i=1

n+1

�i�Q̄��T�i2

.

As

�
i=1

n+1

�i = 1,

we have

V̇���� = − 2�
i=1

n+1

�i��Q̄��T�i − ��Q̄��T�2,

leading to

V̇���� � 0.

So the interior rest point ��* is a stable node. �
That is, for a game with the payoff matrix satisfying a

�c and b�d, if the IPM W is a positive definite matrix, the
interior equilibrium of the population with n communities is
always a sink, which attracts all orbits in Sn. Each commu-
nity stays in the coexistent state of A and B eventually and
the final fractions of any one species in each community
agree on a common value. The consensus of coexistence can
be achieved.

V. INFLUENCES BY INTRODUCING THE COMMUNITY
STRUCTURE

Based on the above discussion, for the games with a�c
and b�d as well as a�c and b�d, the evolutionary dynam-
ics of populations with community structures remains quali-
tatively the same as that of nonstructured populations. Popu-
lation systems can achieve the consensus of homogeneous
state which is full of the same players. However, for the
games with a�c and b�d and those with a�c and b�d,
the impacts of community structures on evolutionary dynam-
ics are complicated, bringing in diverse dynamic behaviors
of population systems. We shall illustrate these two cases for
n�2 by the following concrete examples.

A. Hawk-dove game

Consider a population with hawk and dove strategies �1�.
Hawk is a strategy which fights until one of the players sus-
tains an injury or the opponent retreats. If a hawk meets a
hawk, there is a combat resulting in half of the gain and half
of the loss for each hawk, i.e., �G−C� /2. When a dove meets
a hawk, it immediately concedes the field to the hawk.
Hence, the hawk and the dove receive payoff G and 0, re-
spectively. When a dove meets another dove, both of them
win half of the gains without cost, i.e., G /2. The correspond-
ing payoff matrix of the hawk-dove game is given by

Hawk Dove

Hawk

Dove
��G − C�/2 G

0 G/2 	 .

Note that the elements �G−C� /2, G, 0 and G /2 corre-
spond to a, b, c, and d in the above discussion. In the hawk-
dove games, we always assume that the cost C is larger than
the prize G.

For nonstructured populations, the system ends up with a
coexistent state where the fraction of hawk is G /C ultimately
regardless of the initial state. For community-structured
populations, the effects of community structures on the dy-
namics cannot be ignored. Suppose that there are six com-
munities in the population and the IPM W is given as fol-
lows:
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0.8 0.05 0.05 0.05 0.05 0

0.05 0.3 0.2 0.2 0.1 0.15

0.05 0.2 0.4 0.3 0 0.05

0.05 0.2 0.3 0.35 0.05 0.05

0.05 0.1 0 0.05 0.6 0.2

0 0.15 0.05 0.05 0.2 0.55

� ,

which is a positive definite matrix. According to theorem 4,
each community converges to a coexistent state in which
both hawk and dove survive, independent of the initial state
�see Fig. 4�. Furthermore, as the interior equilibrium is
�G /C ,G /C , . . . ,G /C�, hawks achieve the same ratio G /C
�1−G /C for doves� among all communities. Population sys-
tems reach the consensus state where coexistence of hawk
and dove is permitted.

However, for a noninvertible IPM W, Eq. �2� no longer
has an unique interior equilibrium, but a subset of interior
fixed points. Thus, the point �−� /� , . . . ,−� /�� is not longer
a stable interior equilibrium. In particular, population sys-
tems split into several groups and communities in each group
can come to a common state eventually. Interestingly, how
many groups the population splits into depends on the rank
of the noninvertible matrix W. Consequently, the population
arrives at a splitting state �see Fig. 5�. This situation reveals
that some specific community structures are an alternative
mechanism to maintain a diverse society. In Fig. 5, we adopt
the IPM given by



0.5 0 0.3 0.2

0 0.5 0.2 0.3

0.3 0.2 0.5 0

0.2 0.3 0 0.5
� .

B. Coordination games

According to the above analysis, the evolutionary dynam-
ics is significantly affected by community structures in the
case of a�c and b�d. Therefore, different consensus phe-
nomena are yielded by the combined effects of interaction
probabilities �elements of W� and the initial state. Suppose
there are two choices A and B, in populations. We use the
payoff matrix a=5, b=0, c=3, and d=1. In the coordination
games, choosing the same strategy adopted by the opponent
is the best option for players. Hence, in nonstructured case,
the population ends up with all players choosing the same
strategy. Moreover, which state the population converges to,
all A or all B, depends on the interior fixed point x*=−� /�
�in this example, x*=1 /3� and the initial fraction of A play-
ers, i.e., if the initial state exceeds 1 /3, the population will be
full of A players eventually; otherwise, A players will be-
come extinct.

For community-structured populations, the interior equi-
librium �−� /� , . . . ,−� /�� plays an important role in deter-
mining the dynamics in the case of an invertible IPM W. In
each community, the evolutionary trend is determined not
only by the initial fraction of A in this community, but also
by those in other communities. For simplicity, we call the
trend in the absence of community structures as original evo-
lutionary trend. For example, if in community i, the initial
fraction of A is less than −� /�, the original evolutionary
trend is to be the state of all B. Once community structures
are presented, combined effects of structures and the initial
states of all communities may drive this community to the
state of all A, deviating from the original evolutionary trend.

As shown in Fig. 6�a�, the initial population state is �0.32,
0.6, 0.2, 0.5, 0.3, 0.4�. Although there are three communities
where the original trend is to be the state of all B, the whole

FIG. 4. �Color online� Population systems with the Hawk-Dove
game can reach consensus. Let the prize G=2 and the cost C=4.
We get the parameter �=−C /2=−2 and �=G /2=1. The initial state
of the population is �0.15, 0.25, 0.45, 0.99, 0.02, 0.4�. We can find
that each community’s state converges to a common value.

FIG. 5. �Color online� Population systems with the hawk-dove
game can reach a splitting state for a noninvertible IPM W. We also
use the prize G=2 and the cost C=4, and set the initial state of the
population as �0.1, 0.5, 0.7, 0.2�. It is found that the first and the
second communities converge to a common state which is less than
−� /�, whereas the third and the fourth one reach a different com-
mon state which exceeds −� /�. The population is divided into two
groups and cannot attain consensus.
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population still evolves to the state of all A ultimately under
the influences of community structures. Thus, the population
systems can reach consensus state of all A. Conversely, in
Fig. 6�b�, under the initial condition of �0.2, 0.5, 0.1, 0.1,
0.25, 0.4�, though there are communities where the original
evolutionary trend is towards the state of all A, all individu-
als choose B eventually. In this case, population systems can
also come to consensus. Interestingly, as shown in Fig. 6�c�,
some communities end up with all A players while the others
with all B. The two choices of A and B can coexist in the
whole population, in sharp contrast to the situation without
community structures. In this case, the population system
cannot arrive at consensus but stays at a splitting state.

How does the combined effect of interaction probabilities
and the states of all communities influence the evolutionary
dynamics? The explanation can be derived from Eq. �2�.
When the “combined effect” � j=1

n wijxj exceeds x*=−� /�,
the fitness of A players in community i is larger than that of
B, increasing the fraction of A in this community; whereas
when the combined effect is less than x*, the fitness of A
players in community i is less than that of B, reducing the
fraction of A in this community. Take the fifth community in
the second case in Fig. 6 for example �see Fig. 7�. Initially, as
the fraction of A in this community is less than x*=−� /�,
the original trend is towards the state of all B. The combined
effect below −� /� leads to the decrease of A players in the
fifth community. Then, with the combined effect exceeding

x*=−� /�, the fraction of A in this community increases until
it reaches the state of all A. Thus, the original evolutionary
trend of the fifth community is altered by the present com-
munity structures and the states of other communities. Over-
all, these results indicate that community structures of popu-
lations have nontrivial effects on the evolutionary dynamics.

VI. CONCLUSIONS

In conclusion, we have presented a theoretical analysis of
the population dynamics with community structures based on
an extended replicator equation. Regarding the four different
types of games quantifying the population dynamics, we in-
vestigate the resulting consensus problem in such population
systems. We show that, for the case of a�c and b�d �a
�c and b�d�, the system can reach a consensus of homo-
geneous state. The dynamics in this case remains qualita-
tively unchanged as compared with the nonstructured popu-
lations, although convergent trajectories are naturally
affected by the underlying community structures. While, for
the case of a�c and b�d, the system can achieve a consen-
sus of coexistent state in all communities, if the interaction
probability matrix specifying the community structure is
positive definite. For noninvertible interaction probability
matrices, the system can split into distinct groups of commu-
nities with the identical coexistent state. For the case of a
�c and b�d, in particular, the population in each commu-
nity tends to be homogeneous eventually, but, the whole
population system may turns out to be heterogeneous, in the
sense that some communities are full of one type, while the
rest consist of the other type. In other words, depending on

FIG. 6. �Color online� In the case of a�c and b�d, dynamics
of three different populations. In the three figures, we use the same
payoff matrix �a=5, b=0, c=3, d=1� �a�. Setting the initial state of
the population as �0.32, 0.6, 0.2, 0.5, 0.3, 0.4�, we get a consensus
state of all A. �b� The initial state of the population �0.2, 0.5, 0.1,
0.1, 0.25, 0.4� leads to an opposite consensus state of all B. �c� If the
initial state is �0.2, 0.6, 0.3, 0.1, 0.25, 0.4�, population systems split
into two contrary parts, i.e. one is communities of all A and the
other is those of all B. In these three examples, we also use the 6
�6 IPM adopted in the Hawk-Dove game mentioned above.

FIG. 7. �Color online� Relationship between the combined effect
� j=1

n wijxj and the fraction of A players in community i. The hori-
zontal red line in the first figure indicates the value x*=−� /�
�which is equal to 1 /3 in this example�. It shows that the fraction of
A players in this community increases when the combined effect
exceeds 1 /3, while decreases when the combined effect is less than
1 /3.
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the combined effect of interaction probabilities and the initial
state of the population, different strategic types can peace-
fully inhabit the whole population, resulting in a diverse, yet
harmonious society. Furthermore, for the latter two cases
with invertible interaction probability matrix, we provide a
sufficient and necessary condition for the system to attain a
consensus of coexistent state in all communities. We hope
that the present study might shed some light on understand-
ing the effects of community structure, ubiquitous in the real
world, on the evolutionary outcome.
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APPENDIX A: TABLE OF STABILITY OF EACH FIXED
POINT IN DIFFERENT CASES

The stability of each fixed point in different cases is listed
in Table I.

APPENDIX B: STABILITY OF EQUILIBRIA IN THE CASE
OF n=2

Elements of the Jacobian matrix J of Eq. �2� are given by

Jii = �1 − 2xi����
j=1

n

wijxj + � + �wiixi�1 − xi� ,

Jij = �wijxi�1 − xi�, j � i . �B1�

Under the condition of n=2, the Jacobian matrix J is re-
duced to

TABLE I. Stability of each fixed point

a�c,
b�d

a�c,
b�d

a�c and b�d

�+2��0,
��

�+�
�

�+2��0,
− �

� ���
�+�

�

�+2��0,
��− �

�

�+2��0,
�+�

� ���− �
�

�0,0� unstable stable unstable unstable unstable unstable

�0,1� saddle saddle unstable saddle unstable saddle

�0, − �
�� � saddle saddle saddle

�1,0� saddle saddle unstable saddle unstable saddle

�1,1� stable unstable unstable unstable unstable unstable

�1, − �1−���+�
�� � saddle saddle saddle

�− �
�� ,0� saddle saddle saddle

�− �1−���+�
�� ,1� saddle saddle saddle

�− �
� ,− �

� � stable stable stable stable

a�c and b�d

�+2��0,
��− �

�

�+2��0,
�+�

� ���− �
�

�+2��0,
��

�+�
�

�+2��0,
− �

� ���
�+�

�

�0,0� stable stable stable stable

�0,1� stable saddle stable saddle

�0, − �
�� � saddle saddle saddle

�1,0� stable saddle stable saddle

�1,1� stable stable stable stable

�1, − �1−���+�
�� � saddle saddle saddle

�− �
�� ,0� saddle saddle saddle

�− �1−���+�
�� ,1� saddle saddle saddle

�− �
� ,− �

� � unstable unstable unstable unstable
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��1 − 2x1����w11x1 + w12x2� + �� + �w11x1�1 − x1� ��x1�1 − x1�
�x2�1 − x2� �1 − 2x2����w21x1 + w22x2� + �� + �w22x2�1 − x2� 	 . �B2�

For each equilibrium, the corresponding eigenvalues of the
Jacobian matrix J are listed in Table II.

�a� If a�c and b�d, the equilibria �0,−� /���,
�1,−��1−���+�� /���, �−� /�� ,0�, �−��1−���+�� /�� ,1�,
and �−� /� ,−� /�� cannot be found in S2. There are only four
boundary equilibria �0, 0�, �0, 1�, �1, 0�, and �1, 1�. At the
equilibrium �0, 0�, the eigenvalues of the Jacobian matrix J
are both b−d�0, which results in an unstable equilibrium.
Similarly, under the condition of a�c, the equilibrium �1, 1�
is a stable node. At the equilibria �0, 1� and �1, 0�, the eigen-
values ��1−��+� and −��−� can be expressed by �a
−c��1−��+ �b−d�� and −�a−c��+ ��−1��b−d�, respectively.
Obviously, the first one is positive and the second one is
negative. In this case, both �0, 1� and �1, 0� are saddle nodes.
Hence, the stability of the four equilibria implies that the
population ends up with the all A state.

�b� If a�c and b�d, the situation is similar to the above
discussion.

�c� If a�c and b�d, all the nine fixed points can be
observed in the phase plane. As −� /� is always in the inter-
val �0, 1� and the two corresponding eigenvalues are both
negative, the interior equilibrium �−� /� ,−� /�� exists and
attracts every orbit in S2.

Note that 0�−� /���1 needs ��−� /�, and 0�−��1
−���+�� /���1 needs �� ��+�� /�. By comparing −� /�
with ��+�� /�, we distinguish two situations as follows.

�1� Given �+2��0, we have −� /�� ��+�� /�. Thus,
there are three scenarios �� ��+�� /�, −� /���� ��
+�� /� and ��−� /�. In the first case, all the nine equilibria
exist. We obtain that both of the eigenvalues corresponding
to the points �0, 0�, �0, 1�, �1, 0�, and �1, 1� are positive.
Therefore, these four points are all unstable nodes. Further-
more, as one of the eigenvalues is negative and the other one
is positive, the other fixed points except the interior one are
all saddle nodes. In the second case, two fixed points
�1,−��1−���+�� /��� and �−��1−���+�� /�� ,1� are elimi-
nated from the phase plane. By computing the two eigenval-

ues corresponding to each fixed point listed in Table II, we
conclude that only the equilibria �0, 0� and �1, 1� are unstable
nodes, the other equilibria except the interior fixed point are
all saddle nodes. In the last case, as there are −� /��1 /2
and ��1 /2, the condition ��−� /� cannot be satisfied and
this case is invalid.

�2� Given �+2��0, we have −� /�� ��+�� /�. Thus,
there are still three scenarios ��−� /�, ��+�� /����
−� /� and �� ��+�� /�. In the first case, all the nine equi-
libria are in the phase plane and the population dynamics is
similar to that under the conditions of �+2��0 and �
� ��+�� /�. In the second case, the fixed points �−� /�� ,0�
and �0,−� /��� do not exist. Therefore, there are seven equi-
libria. Similarly, we find that the points �0, 0� and �1, 1� are
unstable nodes and the other four are saddle nodes. In the
third case, as the condition �+2��0 results in ��+�� /�
�1 /2, inequality �� ��+�� contradicts the definition of the
interaction probability �. Thus, this case does not exist.

�d� If a�c and b�d, the analysis is similar to the discus-
sion �c�.

APPENDIX C: STABILITY OF THE INTERIOR
EQUILIBRIUM IN n COMMUNITIES

Proof of theorem 1. Let 	�xi� denote 1−xi and Gi�x�� de-
note xi��� j=1

n wijxj +��. Equations �2� and �3� are transformed
to

ẋi = 	�xi�Gi�x�� �C1�

and

żi = Gi�z�� . �C2�

By solving the system of linear equations

TABLE II. Eigenvalues of Jacobian matrix J.

equilibrium eigenvalue 
1 eigenvalue 
2

�0,0� b−d b−d

�0,1� ��1−��+� −��−�

�0, −� /��� ��2�−1� /� −��1+� /���
�1,0� −��−� ��1−��+�

�1,1� c−a c−a

�1, −��1−���+�� /��� �a−c��1−2�� /� −��1−���+���a−c� /��

�−� /�� ,0� −����+�� /�� ��2�−1� /�

�−��1−���+�� /��, 1� −��1−���+���a−c� /�� �a−c��1−2�� /�

�−� /� ,−� /�� −��a−c� /� −��a−c��2�−1� /�
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��
j=1

n

wijxj + � = 0,

we obtain a solution x�*= �−� /� , ¯ ,−� /�� which is the in-
terior equilibrium for both Eqs. �C1� and �C2�.

Substituting x�* into the Jacobian matrix of Eqs. �2� and
�3�, respectively, we obtain

�J1�ij = � �	�xi�Gi�x��
�xj

�
x�*

= �	�xi�
�Gi�x��

�xj
�

x�*

= 	�xi��wijxi
* = − �1 + �/���wij ,

�C3�

�J2�ij = � �Gi�z��
�zj

�
x�*

= �wijxi
* = − �wij . �C4�

As �� j=1
n wijxj

*+�=0, we omit the term �
�	�xi�

�xj
�x�*Gi�x�*� in

Eq. �C3� and the term �� j=1
n wijxj

*+� in Eq. �C4� when
i= j. Obviously, there is J1= �1+� /��J2. Consequently, if 

is the eigenvalue of Jacobian matrix J2, �1+� /��

is the eigenvalue of J1. As 1+� /� is positive, the
stability of the equilibrium x�* in Eqs. �2� and �3� are the
same.
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